Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Genet Eng Biotechnol ; 19(1): 82, 2021 May 31.
Article in English | MEDLINE | ID: covidwho-1247615

ABSTRACT

BACKGROUND: Several coronavirus vaccine have been fast-tracked to halt the pandemic, the usage of immune adjuvants that can boost immunological memory has come up to the surface. This is particularly of importance in view of the rates of failure of seroconversion and re-infection after COVID-19 infection, which could make the vaccine role and response debatable. Peroxisome proliferator-activated receptors (PPARs) have an established immune-modulatory role, but their effects as adjuvants to vaccination have not been explored to date. It is increasingly recognized that PPAR agonists can upregulate the levels of anti-apoptotic factors such as MCL-1. Such effect can improve the results of vaccination by enhancing the longevity of long-lived plasma cells (LLPCs). The interaction between PPAR agonists and the immune system does not halt here, as T cell memory is also stimulated through enhanced T regulatory cells, antagonizing PD-L1 and switching the metabolism of T cells to fatty acid oxidation, which has a remarkable effect on the persistence of T memory cells. What is even of a more significant value is the effect of PPAR gamma on ensuring a profound secretion of antibodies upon re-exposure to the offending antigen through upregulating lipoxin B4, therefore potentially assisting the vaccine response and deterring re-infection. SHORT CONCLUSION: In view of the above, we suggest the use of PPAR as adjuvants to vaccines in general especially the emerging COVID-19 vaccine due to their role in enhancing immunologic memory through DNA-dependent mechanisms.

2.
Med Hypotheses ; 148: 110520, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1051862

ABSTRACT

Following the decline in Physical Activity (PA) due to COVID-19 restrictions in the form of government mandated lockdowns and closures of public spaces, the modulatory effect of physical exercise on immunity is being heavily revisited. In an attempt to comprehend the wide discrepancy in patient response to COVID-19 and the factors that potentially modulate it, we summarize the findings relating PA to inflammation and immunity. A distinction is drawn between moderate intensity and high intensity physical exercise based on the high lactate production observed in the latter. We hypothesize that, the lactate production associated with high intensity anaerobic exercise is implicated in the modulation of several components of the innate and adaptive immunity. In this review, we also summarize these immunomodulatory effects of lactate. These include increasing serum IL-6 levels, the main mediator of cytokine storms, as well as affecting NK cells, Macrophages, Dendritic cells and cytotoxic T-lymphocytes. The implications of high lactate levels in athletic performance are highlighted where athletes should undergo endurance training to increase VO2 max and minimize lactate production. Tumor models of hypoxia were also reported where lactate levels are elevated leading to increased invasiveness and angiogenesis. Accordingly, the novel lactate blocking strategy employed in cancer treatment is evaluated for its potential benefit in COVID-19 in addition to the readily available beta-blockers as an antagonist to lactate. Finally, we suggest the diagnostic/prognostic purpose of the elevated lactate levels that can be determined through sweat lactate testing. It is the detrimental effect of lactate on immunity and its presence in sweat that qualify it to be used as a potential non-invasive marker of poor COVID-19 outcome.


Subject(s)
COVID-19 Drug Treatment , Lactic Acid/antagonists & inhibitors , Anaerobiosis/immunology , COVID-19/immunology , COVID-19/physiopathology , Exercise/physiology , Humans , Inflammation/immunology , Interleukin-6/blood , Lactic Acid/immunology , Lactic Acid/metabolism , Models, Immunological , Pandemics , SARS-CoV-2
3.
Obes Med ; 22: 100317, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1002939

ABSTRACT

The COVID-19 death toll has involved to date more than 1 million confirmed deaths. The death rate is even higher in the obese COVID-19 patients, as a result of hypoxia, due to the interplay between adipose tissue hypoxia and obstructive sleep apnea. The discrepancy of manifestations seen in COVID-19 seems to be mediated by a differential immune response rather than a differential viral load. One of the key players of the immune response is HIF. HIF-1ß is a stable constitutively expressed protein in the nucleus; and under hypoxic changes, its activity is unaffected, whereas the HIF-α subunit has a short half-life and because of its degradation by an enzyme known as propyl hydroxylase; under hypoxic conditions, propyl hydroxylase gets deactivated thus leading to the stabilization of HIF-1α. As mentioned before, HIF-1α expression is triggered by hypoxic states, this crippling condition will aggravate the pro-inflammatory characteristics of HIF-1α. The vast majority of decompensated COVID19 cases manifest with drastic lung injury and severe viral pneumonia, the infection-induced hypoxia will the existing hypoxia in obesity. This will additionally augment HIF-1α levels that will provoke the already existing cytokines' storm to fulminant. Consequently, this will directly correlate the effect of a hypoxic environment with the increase of HIF-1α level. HIFɑ exists in two main isoforms HIF-1α and HIF-2α. HIF-1α and HIF-2α act in distinct ways in how they work on different target genes. For example, HIF-2α may act on hemopoietin genes (heme-regulating genes); while HIF-1α acts on EPO. HIF-1α release seems to be markedly augmented in obesity due to adipose tissue hypoxia and obstructive sleep apnea resulting in cyclic hypoxia. HIF-1α can also be secreted by direct viral proteolytic effects. Whereas, HIF-2α is stimulated by chronic hypoxia. HIF-1α exerts detrimental effects on the immune system, characterized by unopposed pro-inflammation at the macrophages, dendritic cells, T cells, and complement levels resulting in cytokines' storm, which is linked to the poor outcomes of COVID-19. On the other hand, HIF-2α role is regulatory and largely opposes the actions mediated by HIF-1α. In view of this, inhibiting HIF-1α release or switching its production to HIF-2α by natural products such as resveratrol or by synthetic drugs, offer a good therapeutic strategy that can prevent COVID-19 worst outcome in infected patients. The approach of breaking the vicious circle between lung damage-induced hypoxia and HIF-1α pro-inflammatory stimulant through drugs is considered to be extremely promising as a therapeutic manner to combat further deterioration of COVID19 cases.

4.
Med Hypotheses ; 145: 110343, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-842726

ABSTRACT

ABO blood groups is a cheap and affordable test that can be immediately retrieved from COVID-19 patients at the diagnosis. There is increasing evidence that non-O blood groups have both higher susceptibility and higher severity of COVID-19 infections. The reason behind such relationship seems elusive. Regarding susceptibility, Non-O individuals have Anti-A antibodies which can prevent viral entry across ACE-2 receptors, moreover, Non-O individuals are at higher risk of autoimmunity, hypercoagulable state, and dysbiosis resulting in an augmented tendency for vascular inflammatory sequelae of COVID-19. We can conclude, on the diagnostic level, that ABO blood groups can be potentially used for risk stratification of affected COVID-19 patients, to anticipate the deterioration of patients at higher risk for complications. On a therapeutic level, plasma from normal O blood group individuals might potentially replace the use of convalescent serum for the treatment of COVID-19.


Subject(s)
ABO Blood-Group System , COVID-19 Serological Testing/methods , COVID-19/blood , COVID-19/diagnosis , Risk Assessment/methods , Antibodies/chemistry , Autoimmunity , COVID-19/immunology , COVID-19/therapy , Disease Progression , Female , Furin/metabolism , Gastrointestinal Microbiome , Humans , Immunization, Passive , Male , Pandemics , Thrombosis , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL